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After a discussion of gradient expansions for physical quantities through a planar 
liquid -vapour interface, two proposals are made as to possible generalizations of the 
tangential pressure deficit through the interface. One expresses the deficit in terms of 
force- force correlation functions and the other in terms of the direct correlation 
function in the presence of the interface. Finally, a very practical approach generalizes 
Fowler’s formula for the surface tension, to obtain an explicit, though now evidently 
approximate expression for the tangential pressure deficit in the limit when the thickness 
of the interface tends to zero. 

Keywords: Liquid - vapour interface; direct correlation function 

PACs Number: 68.10.Cr 

I. INTRODUCTION 

Considerable interest continues to be shown in the statistical mechan- 
ics of inhomogeneous fluids. One of the simplest examples, which is the 
main focus of the present study, is the planar liquid-vapour interface, 
taken here to lie in the (xy)  place. 

It is well known that the corresponding surface tension c can be 
written as an integral 

Torresponding author. 

of the tangential pressure deficit p -p t ( z ) ,  where 
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496 D. LAMOEN AND N. H. MARCH 

pt(z) is the variation of the tangential pressure induced by the interface, 
whilep is the (constant) normal pressure. Going back to the pioneering 
work of Kirkwood and Buff [l], based on a pair potential assumption, 
p -pt(z)  has the explicit form 

where the components of a have been written as 
qY(R) = d$/dR. Here c$(@ is the pair potential, and n2 the pair cor- 
relation function in the presence of the inhomogeneity. 

Our object in the present study is to seek a generalization of Eq. (1) 
which avoids the pair potential assumption. Then as is clear from 
numerous statistical mechanics studies [2-41, the correct tool to use is 
the direct correlation function c(7, 7’). In terms c(7, 7 ’ ) ,  the integral of 
the tangential pressure deficit is known from the work of Triezenberg 
and Zwanzig [2], which they attribute as going back to Yvon. This 
formula for the surface tension c reads: 

where p(z) is the density profile through the interface and &(z,z‘) is 
defined precisely in terms of c(?,?’) in Eq. (1 1) below. The question to 
which we propose an answer below is ‘What is the tangential pres- 
sure deficit corresponding to the direct correlation function theory 
of surface tension summarized in Eq. (2)?’ We shall approach this by 
setting out in Section I1 a summary of results which employ a low-order 
gradient expansion in the density profile p(z). Here, precise results are 
readily written down for the tangential pressure deficit p -pt(z) .  They 
are now posed, however, because of the gradient expansion approxi- 
mation, in terms of ~ ( z )  and its derivatives, and the bulk direct cor- 
relation function &,Po) where po is the (now constant) bulk liquid 
density. We note here that, recently, March and Tosi [5] have proposed 
an (inevitably approximate) formula for the direct correlation function 
c(7,?’) in terms of (a) the bulk direct correlation function c(r ,po) ,  
(b) the density profile e(z) and its gradient and (c) the thickness, L 
say, for the liquid-vapour interface. We shall relate this work to 
both the gradient expansion treatment of Section I1 below, as well as 
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LIQUID -VAPOUR INTERFACE 497 

to the (formally) exact theory in terms of c(7,7’) set out in Section 111, 
while Section IV constitutes a summary, together with some pro- 
posals for possible future work in this area. 

11. GRADIENT EXPANSION APPROXIMATION 
FOR TANGENTIAL PRESSURE DEFICIT 

Following the study of Yang, Fleming and Gibbs [6]. the work of 
Bhatia and March [7] was concerned with the way such gradient expan- 
sions using the variation of the density profile p ( z )  could lead to the 
correlation between surface tension Q and a bulk property of the dense 
liquid, the isothermal compressibility K ~ ,  via the ‘surfacc thickness’ L : 
namely 

U K T  = L (3) 

This correlation, known for instance to Cahn and Hilliard [8] and to 
Egelstaff and Widom [9], has been shown recently to apply to 
monoatomic liquids (e.g., Ar and liquid metallic Na) but also to a wide 
variety of organic liquids [lo]. 

In deriving Eq. (3) from a gradient expansion approximation, Bhatia 
and March wrote the (constant) normal pressure through the interface 
in the form 

where p is the chemical potential, while $(po) is the local free energy 
density of a uniform fluid of density po and A(po) is defined in terms 
of the bulk fluid direct correlation function c(r, po) by [6] 

A( po) = r2c(r, p0)& 
kBT s 

The tangential pressure deficit p -pr(z) is readily written from the 
surface tension result, going back essentially to van der Waals (see also 
Ref. [7]): 

+m 
u = / A [ ~ ( z ) ] p ’ ( z ) ~ d z .  

J --M 
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498 D. LAMOEN AND N. H. MARCH 

This can be shown (see also Ref. [6])  to yield the tangential pressure 
deficit, quite precisely to the order displayed in the gradient expansion, 
as 

If one wishes, the combination Eqs. (7) and (4) can be utilized to 
write p,(z) in gradient expansion as 

The two formulas (7) and (8) are the main results of the present 
section, and provide our motivation for seeking a formally exact result 
for the tangential pressure deficit p -p,(z), thereby generalizing the 
low-order result (7). 

We note that the result of Eq. (7) can also be written in terms of the 
stress tensor (first obtained by Lovett in his thesis, see [6]).  To lowest 
order in the gradient expansion the stress tensor is given by 

Since the normal (p,(z)  = p) and tangential (p,(z)) pressure are 
given by the diagonal elements d” and d(x respectively, we obtain 
from d” - d(x(z) immediately Eq. (7). 

111. FORMALLY EXACT PROPOSAL FOR TANGENTIAL 
PRESSURE DEFICIT 

A. The Direct Correlation Function 

The results reported in Section I1 are complete, and quite explicit, for 
p -p,(z) to lowest order in the gradient expansion. However, they have 
motivated us to seek a (formally) exact expression forp -p,(z) in terms 
of ~ ( z )  appearing already, with its derivative depz, in Eq. (7). One 
wishes to embody also, in place of A[e(z)] in Eq. (7), defined through 
Eq. ( 5 )  in terms of the bulk direct correlation function, the ‘inhomo- 
geneous’ direct correlation function c(7,F’). 
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LIQUID - VAPOUR INTERFACE 499 

The natural starting point is then the surface tension formula (see [2]): 

where K2 is related to c(7, 7’) by [2] 

where u’ denotes a vector in the (x,y) plane. 
If, as March and Tosi note [5] (see also Ref. [ I l l ) ,  c(7,7’) is ap- 

proximated by a &function form, then the van der Waals-like formula 
for a is regained. 

Thus, our proposal from the arguments of Section I1 plus Eq. (10) 
is that 

In principle, one could add a quantity, A ( z )  say, to the RHS of 
Eq. (12) provided that 

d z A ( z )  = 0 1, 
However, the close connection of Eq. (12) with the precise gradient 

result (7) provides a strong argument, though not a final proof, that 
Eq. (12) is a complete, and formally exact, expression for the tangen- 
tial pressure deficit. (In Appendix A we give an expression for p -p t ( z )  
in the case of pair potentials). 

B. Force - Force Correlation Function 

An equally valid form for the pressure deficit follows from the force- 
force correlation function as shown by Schofield [3]. An explicit form 
of the stress tensor for an (assumed) pair potential 4(r) is given by 

with n(7,7’) the pair density and the sum is taken over all particles. 
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500 D. LAMOEN AND N. H. MARCH 

The mean value (nap( i ) )  must be a function of Z only in the pre- 
sent case of a liquid-vapour interface in the ( x , y )  plane. 

The component (P (2 ) )  of the mean value of the stress tensor must 
be a constant through the interface, and represents the pressure. This, 
at least formally, transcends then the low-order gradient expansion 
result for the pressure in Eq. (4), though that equation, being charac- 
terized by the density profile e(z) and the (bulk) direct correlation func- 
tion has already escaped from the mould of pair potential theories. 

Let us form what is, in essence, the tangential pressure deficit 
p - pl(z)  from Eq. (1 4), namely 

The first term on the RHS of Eq. (14), when averaged, involves the 
thermal energy kBT times the density profile p(z) and makes no con- 
tribution to the tangential pressure deficit. Hence we can write 

) P - P , ( z ) = ; (  J d 2 ( x 3 - z g ) l  f3X dXn(?-Xji,7+(1-X)2) 
1 

On integrating this Eq. (16) over all z, this must lead to Schofield's 
equation ( 5 )  which reads 

Returning to Eq. (1 6), we choose therefore to write, following the 
pioneering work of Kirkwood and Buff [I]: 
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LIQUID - VAPOUR INTERFACE 501 

where the second line follows from the fact that $(R) is spherical sym- 
metric. 

With J”(g)  defined as in Schofield’s work as the momentum density 
through 

J”(7) = CppS(7- 7i) 
I 

Schofield proves the result: 

where L(T1 7’) represents explicitly what Schofield calls “local” terms. 
Hence Eq. (19) can be rewritten in the form, using 

1 
p - p , ( z )  = 2kBT J da[XyP(?) .P(?  + 2,) - zyP(7).P(7 + a))] 

(23) 

Having already assumed in Eq. (21) that the “local” contribution 
only involves, as Schofield asserts, S(7- 7’) and its first and second 
derivatives, the function L(7,7’) makes no contribution to Eq. (23) 
because of the factors X2 and Z2. 

Thus, the conclusion of this section is that the tangential pressure 
deficit is related to appropriate spatial moments of force - force 
correlation functions. Integrating Eq. (23) over z from - 00 to + 00 

immediately gives back Schofield’s equation (1 8) for kBT times the 
surface tension. 

In Appendix B we have added some comments on curved interfaces. 

IV. SUMMARY AND POSSIBLE FUTURE DIRECTIONS 

The main aim of the present paper has been to establish first the 
tangential pressure deficit and the closely related stress tensor [6] in the 
lowest-order gradient expansion theory. 
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502 D. LAMOEN AND N. H. MARCH 

We have then transcended this low-order gradient approximation 
and have then been led, in terms of the direct correlation function 
c(?,?’) in the presence of the planar liquid-vapour interface to the 
proposal (12) in terms of the density profile p(z) and @ , ? I )  through 
Eq. (11). We have also established an expression of the tangential 
pressure deficit in terms of the force - force correlation function. We 
note however, that, in principle, both (12) and (23) could be modified 
by the addition of a function A(z), which then must satisfy the sum 
rule (13). To lowest order in the gradient expansion, we have proved 
however that A(z) = 0 and it is a matter for future studies to prove 
that A(z) is zero to all orders. 

It would, of course, be very important if it proved possible by 
suitable experimental techniques to measure directly the tangential 
pressure pt (z )  (for example by neutron scattering studies of correlation 
functions). Also, it seems to us that the way in which pl (z )  tends to the 
(normal) pressure p as ( z (  + cc is a matter of some theoretical interest, 
and should be amenable to attack using hydrodynamic equations. 
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APPENDIX A 

A very early attempt to construct a pair potential theory of surface 
tension CJ at a planar liquid - vapour interface goes back to Fowler [ 121, 
Though Fowler’s derivation was different, one can obtain his result 
from Eq. (1) by making two approximations. The first is to write 
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LIQUID- VAPOUR INTERFACE 503 

n2(? 7 + g) in terms of ~ ( z )  and the bulk pair correlation function g(R)  
in the dense liquid phase [13], [14] 

n2(K i?+ E )  = p(z)e(z + Z)g(R) (All  

Inserting t h s  into Eq. (l) ,  the further approximation of Fowler is 
then to take a step model of the density profile, namely 

p ( z ) = O  o < z < o o  

= p /  - o o < z < o  

Inserting these two approximations (Al) and (A2) into the initially 
exact pair potential result for the tangential pressure deficit, Eq. (1) 
yields then 

00 

p -p , ( z )  = - 4 p;B(-z) dRr$’(R)g(R)(R2z - z3)B(R - z)B(R i- z )  

where O(z) is the Heaviside function, which expresses the fact that the 
tangential pressure deficit is zero for the vapour phase ( z  > 0) within 
the Fowler step model. Integrating Eq. (A3) over z immediately yields 
Fowler’s expression for the surface tension [ 121: 

(T = - p, dRR44’ (R)g (R)  ; 2Lm 
APPENDIX B 
INTERFACES 

SOME COMMENTS ON CURVED 

As discussed by Yang et al. [6] Lovett’s formula for the stress tensor, 
quoted in Section I1 for the planar interface is in fact true also for 
curved interfaces, of course at the level of the lowest-order gradient 
expansion theory. 

Transcending the gradient expansion, the analogue of the 
Triezenberg-Zwanzig theory for curved interfaces has been set out 
by Henderson and Schofield [4]. They derived an expression for the 
surface tension of a spherical interface, of radius R,, which is valid 
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504 D. LAMOEN AND N. H. MARCH 

within the leading-order difference from the planar interface. In 
analogy with expression (12), we therefore define a diyerential sugace 
tension as 

7r 
&(r)  = -ksTe’(r) dRR2[R2 - ( r  - r’)2]c(R,r ,r’)  

2 

where d is a measure of the range of the direct correlation function 
c(R, r ,  r ’ )  and R = 17 - 7’1. Integration of expression (Bl) over r gives 
back the formula for the surface tension of Henderson and Schofield. 
Of course one can add a term, A(r) say, to Eq. (Bl) which integrates 
to 0: J:” A(r)dr  = 0. We can readily prove that D,(r) in the limit of 
the lowest order gradient expansion reduces to 

with A[&)] given by Eq. (5 ) .  However, without explicit knowledge of 
the Re-dependence of D,(r) beyond the formal statement in Eq. (Bl) 
we are not presently able to show the relation between expression (Bl) 
and expression (12), due to the difference in spherical coordinates and 
the planar limit of the interface in Eq. (12). D
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